

UNIVERSITY OF NIŠ

Course Unit Descriptor		Faculty		Faculty of Me	chanical Engineering	
GENERAL INFORMATION						
Study Program	Mechanical Engineering					
Study Module (if applicable)	-					
Course Title	Transport Processes in Energy and Process Engineering					
Level of Study	Bachelor		□ Master's		🗵 Doctoral	
Type of Course	Obligatory		⊠ Elective			
Semester	🗆 Autumn		⊠ Spring			
Year of Study	1					
Number of ECTS Allocated	10					
Name of Lecturer/Lecturers	Gradimir S. Ilić, Mića V. Vukić, Miloš M. Jovanović, Dragiša D. Nikodijević, Dragoljub S. Živković, Gordana M. Stefanović					
	⊠ Lectures] Grou	p tutorials	Individual tutorials	
Teaching Mode	Laboratory work		🛛 Project work		🖂 Seminar	
	Distance	learning	Blended learning		Other	

Purpose and Overview (max. 5 sentences)

Students gain knowledge on which they can independently solve problems related to turbulent flow and gas dynamics. Also they gain the knowledge that will allow them to independently solve problems of conductive and convective heat transfer and become familiar with the processes of combustion.

Syllabus (brief outline and summary of topics, max. 10 sentences)

1) Heat and mass transfer: Basic laws for transport of quantities, momentum, heat, chemical species ...; The generalization of conservation laws; Unambiguity conditions (boundary, initial conditions,...); Control volume method. 2) Basics of turbulent flow: Nature and major qualitative universal features of turbulent flows; Representative examples of turbulent flows; Methods of describing and studying turbulent flows; Kinematics; Dynamics; The structure of turbulent flows; Turbulent transport equations. 3) Dynamics of viscous fluid flow: Mathematical models of viscous fluid flow; Analytical solutions of viscous fluid flow; Low Reynolds number flows; Stokes approximation; Oseen's approximation; Higher approximations; Boundary layer; Unsteadiness and turbulence. 4) Gas dynamics: Basic equations of compressible fluid flow; Propagation of disturbances in compressible fluids; Quasi one-dimensional isentropic steady flow; Shock waves; Angled expansion waves; Quasi one-dimensional steady flow of compressible fluid with friction; Quasi one-dimensional steady diabatic flow of compressible fluid; Method of characteristics. 5) Combustion theory: The general energy conservation equation for combustion process; The four functional steps of the combustion process; Laminar flames; Premixed laminar flames; Turbulent combustion; Turbulent flames; Combustion modelling.

Language of Instruction

 \boxtimes Serbian (complete course)

□ Other (complete course)

Serbian with English mentoring

□ Serbian with other mentoring

Assessment Methods and Criteria						
Pre exam Duties	Points	Final Exam	Points			
Activity During Lectures	-	Written Examination	-			
Practical Teaching	-	Oral Examination	Max. 30			
Practical Work or Teaching Colloquia or Seminar	70	Overall Sum	100			
*Final examination mark is formed in accordance with the Institutional documents						