

UNIVERSITY OF NIŠ

Course Unit Descriptor		Faculty	,	Faculty of Me	chanical Engineering	
GENERAL INFORMATION						
Study Program	Mechanical Engineering					
Study Module (if applicable)	-					
Course Title	Theory of Elasticity and Fracture Mechanics					
Level of Study	Bachelor		□ Master's		🛛 Doctoral	
Type of Course	Obligatory		⊠ Elective			
Semester	🗆 Autumn		⊠ Spring			
Year of Study	I					
Number of ECTS Allocated	10					
Name of Lecturer/Lecturers	Dragan B. J	ovanović				
	⊠ Lectures		🗆 Grou	p tutorials	🛛 Individual tutorials	
Teaching Mode	Laboratory work		🛛 Proje	ect work	🖂 Seminar	
	Distance learning		Blended learning		□ Other	

Purpose and Overview (max. 5 sentences)

Acquiring knowledge and skills in theoretical and experimental research, in the Theory of Elasticity and Fracture Mechanics of mechanical-engineering systems and structures. Theory of Elasticity is an upgrade of that knowledge, which students listened on the course Strength of Materials, at the undergraduate level. Students will become familiar to the theoretical foundations of Fracture Mechanics and Damage. The aim of the course is to train students for research in the Theory of Elasticity and Fracture Mechanics.

Syllabus (brief outline and summary of topics, max. 10 sentences)

Basic concepts of the solid body. Theory of stresses: Cauchy equation. Boundary conditions. Navier's equations of equilibrium. Theory of deformations: Cauchy deformation tensor. Saint-Venant's strain compatibility conditions. Relationships between stresses and strains: General Hooke's law. Elastic constants. Lame's equations. Beltrami-Michell's equations. Deformation work. Methods for solving problems of the theory of elasticity: Saint-Venant's problem. Castigliano's theorem. Betti-Maxwell's theorem. Uniqueness solution of the problem of the theory of elasticity. Saint-Venant's principle. Plane problems of the theory of elasticity: Plane strains. Plane stresses. Contact stresses. Elementary elasticity problems in 3-D space. Thermal stresses.

Development of Fracture and Damage Mechanics in the area of application in engineering. Physical models. Continuity and damage. The structure of materials, damage and fracture. Basic relations of fracture mechanics. Models of the linearelastic stress state in front of the crack tip. Solutions of basic equations of fracture mechanics by using the potential function. Forms of crack propagation. Griffith's model of crack. Eshelby tensor of energy. Invariant integrals of fracture in elastic-plastic material. Dynamic of propagation and crack arrest. Branching of cracks. Stability of cracks and crack propagation stability criteria. Crack growth due to fatigue. Speed of crack propagation in fatigue of material.

Language of Instruction

Serbian (complete course)	⊠ English (complete course) □ Other (complete course)					
⊠Serbian with English mentoring	□ Serbian with other mentoring					
Assessment Methods and Criteria						
Pre exam Duties	Points	Final Exam	Points			
Activity During Lectures	-	Written Examination	60			
Practical Teaching	-	Oral Examination	Max. 40			
Teaching Colloquia	60	Overall Sum	100			
*Final examination mark is formed in accordance with the Institutional documents						