

UNIVERSITY OF NIŠ

Course Unit Descriptor		Facult	ty	Faculty of Me	chanical Engineering			
GENERAL INFORMATION								
Study Program	Mechanic	Mechanical Engineering						
Study Module (if applicable)	Energetics a	Energetics and Process Techniques						
Course Title	Fluid dynam	Fluid dynamics interaction						
Level of Study	Bachelor		🗆 Mas	ster's	⊠ Doctoral			
Type of Course	□ Obligatory		🛛 Elec	⊠ Elective				
Semester	□Autumn	□Autumn		⊠Spring				
Year of Study	1	1						
Number of ECTS Allocated	10	10						
Name of Lecturer/Lecturers	Dragiša D. N	Dragiša D. Nikodijević, Živojin M. Stamenković						
	⊠ Lectures		🗌 Grou	ıp tutorials	🛛 Individual tutorials			
Teaching Mode	□ Laborate	Laboratory work		ect work	Seminar			
	Distance	□ Distance learning		ded learning	□ Other			
Purpose and Overview (max. 5 sentences)								

Introduce students with contact fluid dynamic models. Make students familiar with subject so they can recognize, investigate and formulate relevant phenomena in the contact fluid dynamics. The aim of course is students to adopt knowledge from fundamental theory of fluid dynamics and acquire skills in the methodology of phenomenological research of contact fluid dynamics.

Syllabus (brief outline and summary of topics, max. 10 sentences)

1) Tasks of fluid dynamics interaction: Physical phenomena in contacts. Fluid flow, fluid properties and equations, approximation of thin layer, boundary conditions. Body deformation in contact. Heat transfer. One dimensional case. 2) Fluid layer between rigid bodies: One dimensional problems. Hydrodynamic contact of cylinders, cylinder internal contact, external cylinder contact. Two-dimensional problems. The area of contact is known or unknown. Calculation of short bearing. Sphere in cylindrical cavity. Conditions at the entrance. Hydrostatic bearing. Stability of a thin layer of liquid on the surface. Exact solutions of plane problems of fluid flow between the cylinders. 3) Fluid layer between elastic bodies at constant temperature: One-dimensional problem. Modeling. Isothermal problem. Theorem on the existence and uniqueness of the solution. Thickness of the layer of fluid at high loads. Asymptotic methods. Numerical methods. One-dimensional problems unth arbitrary influence function. Rigid cylinder on an elastic layer. Elastic cylinder between rigid plates. The inner cylinder contact. Contact of piston and ring. Isothermal lubrication of plain bearings. Taking into account the viscosity of velocity slip. Linear temperature change transverse to the fluid. The distance between the cylinders is changing over time. Two-dimensional problem. Contact of two arbitrary smooth bodies. Contact of rough and smooth surface. 4) Flow and heat transfer in a layer of fluid between the elastic body: Thermal analogy. Reynolds equations. Non-isothermal one-dimensional contact problem of fluid mechanics. The integral equation for the surface temperature. Thermo hydrodynamic calculation of the elastic sleeve bearing.

Language of Instruction

Serbian (complete course)	English (complete course) Other(complete course)								
⊠Serbian with English mentoring	\Box Serbian with other mentoring								
Assessment Methods and Criteria									
Pre exam Duties	Points	Final Exam	Points						
Lecture (participation)	5	Written Examination	0* (50)						
Homework	5	Oral Examination	Max. 50						
Project work	40	Overall Sum	100						
* Refers to students who have already gained points by completing pre-exam requirements									