

UNIVERSITY OF NIŠ

Course Unit Descriptor		Faculty	Faculty of M	echanical Engineering			
GENERAL INFORMATION							
Study Program	Mechanical Engineering						
Study Module (if applicable)	-						
Course Title	Mechanics IV - Theory of Vibration						
Level of Study	⊠Bachelor		Master's	Doctoral			
Type of Course	⊠ Obligatory		Elective				
Semester	🛛 Autumn		□ Spring				
Year of Study	IV						
Number of ECTS Allocated	6						
Name of Lecturer/Lecturers	Predrag Kozić, Goran Janevski						
	⊠ Lectures		Group tutorials	🛛 Individual tutorials			
Teaching Mode	□ Laboratory work [Project work	Seminar			
	□ Distance	learning	Blended learning	Other			

Purpose and Overview (max. 5 sentences)

The main objective of the course are to develop a general mathematical framework for the analysis of a model of a physical system undergoing vibration and to illustrate how the physics of a problem is used to develop a more specific framework for the analysis of that problem. Such an analysis includes the determination of an exact solution for linear problem and approximate solutions for problems in which an exact solution is difficult to obtain. Presentation of the theory includes proofs of important results, especially proofs that are themselves instructive for a comprehensive understanding of the result. The prerequisites for such a course should include courses in statics, dynamics, mechanics of materials, and mathematics using differential equations.

Syllabus (brief outline and summary of topics, max. 10 sentences)

Modelling of single degree-of-freedom (SDOF) systems. Springs in combination. Viscous damping. Energy dissipated by viscous damping. Static deflections and gravity. Small angle or displacement assumption. Equivalent systems method. Standard form of differential equation. Free vibrations of undamped system. Critically damped free vibrations. Over damped free vibration. Forced response of an undamped system due to a single-frequency excitations. Forced response of a viscously damped system subject to a single-frequency harmonic excitation. Two degree-of-freedom systems. Natural frequencies and mode shapes. Free response of undamped systems. Free vibrations of a system with viscous damping. Dynamic vibration absorbers. Forced vibrations of two degree-of-freedom systems. Vibrations of continuous systems. General method. Second-order systems: Strings, Bars and Shafts. Transverse beam vibrations.

Language of Instruction

Serbian (complete course)

□ English (complete course)

□ Other _____ (complete course)

Serbian with English mentoring

 \Box Serbian with other mentoring

Assessment Methods and Criteria					
Pre exam Duties	Points	Final Exam	Points		
Activity During Lectures	5	Written Examination	50		
Practical Teaching	5	Oral Examination	Max. 50		
Teaching Colloquia	50	Overall Sum	100		
*Final examination mark is formed in accordance with the Institutional documents					