

UNIVERSITY OF NIŠ

Course Unit Descriptor	Fac	ulty	Faculty of Mechanical Engineering			
GENERAL INFORMATION						
Study program		Mechatronics and Control				
Study Module (if applicable)		-				
Course title		Nanotribology				
Level of study		Bachelor 🛛 Master's 🗌 Doctoral				
Type of course		□ Obligatory ⊠ Elective				
Semester		□ Autumn				
Year of study		1				
Number of ECTS allocated		6				
Name of lecturer/lecturers		Jelena Ž. Manojlović				
Teaching mode		☑ Lectures□ Group tutorials□ Individual tutorials□ Laboratory work□ Project work□ Seminar□ Distance learning□ Blended learning□ Other				

PURPOSE AND OVERVIEW (max. 5 sentences)

This course aims to introduce the principles of nanotechnology, provide the theoretical and experimental fundamentals of nanoscience with the numerous nanotechnology applications in medicine or electronics, and many fields. Special attention is dedicated to nanotribology – an area of tribology which studies friction at the nanometer scale. The friction and lubrication phenomena and their causes are discussed at many levels, from macro to the level of atoms. Several experimental tools applied in nanotechnology research have been described, such as the Atomic Force Microscope and the Surface Forces Apparatus, and the results obtained by using them can demonstrate very specific physical behaviour change with scale. This course gives an overview of nanotechnology, the impact of nanotechnology on our future and their perspectives in many scientific fields.

SYLLABUS (brief outline and summary of topics, max. 10 sentences)

1) Tribology, 2) nanotechnology, 3) nanotribology, 4) friction, lubrication and wear, 5) Studying the phenomenon of friction, wear and lubrication at the molecular level, 6) Instruments for research into the phenomena at the nanometer (AFM, XPS, SFA ...). 7) lubrication at the atomic level, 8) Self-assembled monolayers and their application, 9) microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS).

LANGUAGE OF INSTRUCTION					
Serbian (complete course)) 🛛 🖾 English	(complete course)	(complete course)		
□Serbian with English mento	ring Serbian with other mentoring				
ASSESSMENT METHODS AND CRITERIA					
Pre exam duties	Points	Final exam	points		
Activity during lectures	10	Written examination	15		
Practical teaching		Oral examination	25		
Teaching colloquia	50	OVERALL SUM	100		
*Final examination mark is formed in accordance with the Institutional documents					