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dr Slad̄ana Marinković
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1 OSNOVE q–RAČUNA 1
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PREDGOVOR

Ova knjiga je nastala nakon skoro desetogodǐsnjeg istraživačkog rada au-
tora i predstavlja pokušaj sistematizacije objavljenih naučnih rezultata iz
oblasti računa bazičnih hipergeometrijskih funkcija (skraćeno, q–računa). Ona
može biti od koristi, ne samo matematičarima koji se bave specijalnim funkci-
jama, kombinatorikom ili numeričkom matematikom, već i širem krugu čita-
laca za upoznavanje sa atraktivnim i veoma aktuelnim matematičkim sadrža-
jem.

Sa razvojem moderne nauke, kada su potrebe za matematičkim modelima
raznih mikro i makro prostora sve veće, klasična matematika vǐse nije dovoljno
širok okvir za opisivanje fizičke realnosti. U pirodi postoje mnogi difuzioni i
fenomeni u sistemima, kao što su, na primer, magnetni i gravitacioni, koji se ne
mogu opisati konvencionalnim matematičkim pristupom. Takod̄e, na sisteme
sa diskretnom dilatacionom simetrijom, odnosno sa fraktalnom i multifrak-
talnom prirodom ne može se dovoljno dobro primeniti klasični diferencijalni i
integralni račun. Skorašnja istraživanja su pokazala da je matematička ana-
liza zasnovana na bazičnim hipergeometrijskim funkcijama prirodno proširenje
klasične i prigodan alat za tumačenje ovakvih sistema.

Proučavanje bazičnih hipergeometrijskih funkcija, ili q–hipergeometrijskih
funkcija, započelo je još sredinom osamnaestog veka, kada je Euler 1748. go-
dine posmatrao jedan beskonačan proizvod kao funkciju generatrisu za niz
particija prirodnog broja. Ipak, svi rezultati koji se sada svrstavaju u ovu
oblast ostvareni tih godina od strane Cauchyja, Gaussa i drugih poznatih
matematičara bili su sporadični i nepovezani. Nemački matematičar Heine
je 1846. godine formirao novu klasu funkcija uvodeći bazu q, tako da se u
graničnom slučaju svode na Gaussove hipergeometrijske funkcije.

Poslednjih godina XIX i početkom XX veka L.J. Rogers i S.A. Ramanu-
jan su dokazali čudesne identitete sa beskonačnim sumama i proizvodima ko-
jima je bio zadivljen ne samo matematički svet toga doba. U isto vreme,
ali nezavisno od njih, F.H. Jackson se upustio u razvoj novog matematičkog
aparata, zasnovanog na uvod̄enju analogona objekata diferencijalnog i inte-
gralnog računa u onom smislu koji povezuje klasične i bazične hipergeomet-
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rijske funkcije. Pojava q–diferenciranja i q–integracije, kao i q–analogona os-
talih pojmova standardnog kalkulusa omogućila je razvoj teorije bazičnih
hipergeometrijskih funkcija na mnogo sistematičniji način nego do tada, kao i
njihovu primenu u sasvim novim oblastima. Tako, sredinom dvadesetog veka
W. Hahn je, proučavanjem q–diferencijalnog i q–integralnog računa došao i do
q–analogona nekih integralnih transformacija, kao što je Laplaceova transfor-
macija, koja je primenjena za rešavanje q–diferencnih jednačina.

Tako se oblikovala nova matematička teorija, koja ima svoje definicije
pojma broja, elementarnih funkcija, izvoda i integrala, specijalnih funkcija
i transformacija, za koju se u literaturi najčešće koristi termin račun bazičnih
hipergeometrijskih funkcija ili, skraćeno, q–račun.

Prilikom pripreme ove knjige, autori su proučili veći broj monografija i
nekoliko stotina radova poznatih istraživača u ovoj naučnoj oblasti.

Knjiga je podeljena na deset glava.
U prvoj glavi predstavljeni su osnovni elementi ovog računa, kao što su q–

brojevi, q–faktorijeli, q–binomni koeficijenti i bazične hipergeometrijske funk-
cije. Preko ovih hipergeometrijskih funkcija predstavljeni su i analogoni nekih
elementarnih funkcija u bazičnom računu, kao što su q–eksponencijalne, q–
trigonometrijske, q–hiperboličke funkcije, zatim specijalnih funkcija, kao što
su q–gama, q–beta funkcija, q–Besselove funkcije, itd.

O čvrstim vezama izmed̄u kombinatorike i q–računa govori se u drugoj
glavi. Dat je pregled poznatih klasa specijalnih q–brojeva i ukazano na njihovo
pojavljivanje u prekrivanjima euklidskih prostora. Proučeni su algoritmi za
dokazivanje identiteta u ovom računu.

U trećoj glavi uvedeni su q–diferencijalni i q–integralni operatori i date nji-
hove osnovne osobine. Kao nastavak, u četvrtoj glavi obrad̄eni su q–analogoni
nekih fundamentalnih teorema diferencijalnog i integralnog računa, dok su u
sledećoj dati novi pristupi q–integralima i q–integralnim nejednakostima.

Šesta glava posvećena je jednačinama u kojima učestvuju q–izvodi. Poseb-
no su obrad̄ene q–holonomične jednačine, tj. jednačine sa polinomijalnim ko-
eficijentima, a zatim predloženi neki metodi za rešavanje kako holonomičnih,
tako i opštijih q–diferencnih jednačina.

U sedmoj glavi se ukazuje na činjenicu da je najopštiji način opisivanja or-
togonalnih polinoma preko hipergeometrijskih i q–hipergeometrijskih funkcija.
Ovo dovodi do novih klasifikacija ortogonalnih polinoma, predstavljenih As-
keyevom i q–Askeyevom shemom. Polazeći od q–diferencne jednačine Sturm–
Liouvilleovog tipa, izvedena je q–Rodriguesova formula za q–Hahnove poli-
nome, čije različite klase predstavljaju analogije klasa klasičnih ortogonalnih
polinoma. Posle upoznavanja sa osnovnim osobinama nekih klasa polinoma,
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kao što su vrste q–Jacobievih, q–Laguerreovih, diskretnih q–Hermiteovih, Al–
Salam–Carlitzovih polinoma, uvedene su neke klase polinoma ortogonalnih na
kolekciji intervala u kompleksnoj ravni u odnosu na skalarne proizvode defini-
sane preko q–integrala.

U osmoj glavi uvedeni su q–integralni i q–diferencijalni operatori proizvolj-
nog reda sa promenljivom donjom granicom integracije i proučena njihova os-
novna svojstva, kao i frakcione formule Taylorovog i Leibnizovog tipa. Data je
i q–analogija poznate Mittag–Lefflerove funkcije. Konačno, predstavljene su i
najznačajnije q–integralne transformacije, kao analogije Mellinove, Fourierove,
Laplaceove i Hankelove transformacije.

U devetoj glavi su sličnosti i razlike standardnog diferencijalnog i inte-
gralnog računa sa q–računom iskorǐsćene za formiranje originalnih metoda
u numeričkoj matematici. Tako, primenom q–izvoda funkcija, koji ne po-
drazumeva granični proces, izvedeni su metodi za rešavanje nelinearnih jed-
načina i sistema nelinearnih jednačina. Takvi metodi mogu biti od značaja
pri radu sa funkcijama koje nisu diferencijabilne, za koje mnogi od poznatih
metoda ne daju rezultate.

U desetoj glavi problematika q–računa osvetljena je sa stanovǐsta geome-
trije nekomutativnih prostora, kvantne mehanike i fizike, statističke mehanike,
teorije oscilatora i p–adične analize.

Ovom prilikom autori se zahvaljuju recenzentima dr Zoranu Rakiću, dr
Ljubici Velimirović i dr Predragu Stanimiroviću na pažljivom čitanju rukopisa
i pruženoj podršci pri izdavanju knjige.

Kako je ovo prvo izdanje, verovatno postoje propusti i greške. Stoga se
autori unapred izvinjavaju čitaocima i mole ih za razumevanje.

U citiranim radovima se može naći veliki broj hipoteza koje čekaju na
odgovore. Autori se nadaju da će ova knjiga zainteresovati mlade istraživače
da se upuste u izučavanje i primenu q–računa.

U Nǐsu,
septembra, 2008. g. Autori

Dr Predrag Rajković
Dr Slad̄ana Marinković
Dr Miomir Stanković
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Profesionalna interesovanja vezana su za oblast specijalnih
funkcija i transformacija, a lična uglavnom za ćerku Danicu,
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x = R cosq((1 − q)t) ,

y = R sinq((1 − q)t) ,

0 ≤ t ≤ 2π .


